Landslides in Valles Marineris (Mars) A possible role of basal lubrication by sub-surface ice

نویسنده

  • Fabio Vittorio De Blasio
چکیده

There is much interest on the occurrence of water and ice in the past history of Mars. Because landslides on Mars are much better conserved than their terrestrial counterparts, a physical examination and morphological analysis can reveal significant details on the depositional environment at the instant of failure. A study of the landslides in Valles Marineris based on their physical aspect is presented and the velocity of the landslides is calculated with a stretching block model. The results show that the landslides were subject to strong basal lubrication that made them travel at high speed and to long distances. We use physical analysis to explore the four alternative possibilities that the natural lubricant of the landslides in Valles Marineris was either ice, deep water, a shallow carpet of water, or evaporites. Examination of the furrows present on the surface of the landslide deposits shows that either sub-surface ice or evaporites were likely present on the floor of Valles Marineris during the mass

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mobility and topographic effects for large Valles Marineris landslides on Mars

[1] Recent experiments on dry granular flows over horizontal plane bare some similarities with large Martian landslides observed in Valles Marineris (VM). However, Martian normalized runout are twice as large as those that observed in dry granular flow experiments. Numerical simulations on theoretical 2D and real 3D topographies reconstructed from remote sensing data show that slope effects sig...

متن کامل

Seismic Triggering Mechanisms of Large–scale Landslides, Valles Marineris

Large–scale landslides in Valles Marineris wallrock are analyzed in order to determine what triggering mechanisms caused the landslides. These landslides occur in the locality of large faults, and therefore it is hypothesized that the landslides are the result of marsquakes triggering slope instability. This work confirms that landslides occur where the seismic hazard map forecasts highest seis...

متن کامل

Stability of rock slopes in Valles Marineris, Mars

[1] New slope measurements from the Mars Orbiter Laser Altimeter (MOLA), in conjunction with the Rock Mass Rating system (RMR), permit inversions of slope height and angle from wallrock and interior deposits within Valles Marineris troughs for strength and lithology. Wallrock (50 < RMR < 65) is stronger than interior deposits (30 < RMR < 55). These values are consistent with layered igneous roc...

متن کامل

New insights on the runout of large landslides in the Valles-Marineris canyons, Mars

[i] Analogy with lab-scale dry granular flow experiments demonstrates that runouts and deposits heights of VallesMarineris (VM) landslides can be scaled on a curve varying primarily with the initial aspect ratio of the mobilized rock mass (before slope failure). This results suggests both that any interstitial fluid played a negligible part in the VM landslides dynamics and that mobility is not...

متن کامل

Morphology and geometry of Valles Marineris landslides

The walls of the Valles Marineris canyons are affected by about 45 landslides. The study of these landslides provides a test of the hypothesis of processes having affected Martian wallslopes after their formation. The dynamics of Valles Marineris landslides are controversial : either the landslides are interpreted as large debris flows or as dry rock avalanches. Their morphology and their topog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011